dunia fisika

Kalor adalah energi yang berpindah dari benda yang suhunya lebih tinggi ke benda yang suhunya lebih rendah ketika kedua benda tersebut bersentuhan
Teori Kalorik adalah zat alir yang terkandung dalam setiap benda (satuannya kal).
Teori Kinetik adalah teori yang menyatakan bahwa zat disusun oleh partikel-partikel kecil yang selalu bergerak.
Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.

Usaha Luar

Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.

W = p∆V= p(V2 – V1)

Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

pers01Tekanan dan volume dapat diplot dalam grafik p – V. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik p – V, usaha yang dilakukan gas merupakan luas daerah di bawah grafik p – V. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.

fig2004Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.

Energi Dalam

Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.

Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai

untuk gas monoatomik

pers02

untuk gas diatomik

pers03

Dimana ∆U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan ∆T adalah perubahan suhu gas (dalam kelvin).

Hukum I Termodinamika

Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.

Gambar

Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai

Q = W + ∆U

Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.

Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam ∆U.

Proses Isotermik

Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).

Proses isotermik dapat digambarkan dalam grafik p – V di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai

pers04Dimana V2 dan V1 adalah volume akhir dan awal gas.

isothermal_process

Proses Isokhorik

Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.

QV = ∆U

Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = p∆V). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku

pers05Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan

QV =∆U

Dari sini usaha gas dapat dinyatakan sebagai

W = Qp − QV

Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).

diag11

Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = ∆U).

Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai

pers06Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).

341px-adiabaticsvg

Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang lebih curam.
Suhu menunjukkan derajat panas benda. Mudahnya, semakin tinggi suhu suatu benda, semakin panas benda tersebut. Secara mikroskopis, suhu menunjukkan energi yang dimiliki oleh suatu benda. Setiap atom dalam suatu benda masing-masing bergerak, baik itu dalam bentuk perpindahan maupun gerakan di tempat berupa getaran. Makin tingginya energi atom-atom penyusun benda, makin tinggi suhu benda tersebut.

Suhu juga disebut temperatur.Alat Ukur Suhu

Artikel utama: Termometer

Secara kualitatif, kita dapat mengetahui bahwa suhu adalah sensasi dingin atau hangatnya sebuah benda yang dirasakan ketika menyentuhnya. Secara kuantitatif, kita dapat mengetahuinya dengan menggunakan termometer. Suhu dapat diukur dengan menggunakan termometer yang berisi air raksa atau alkohol. Kata termometer ini diambil dari dua kata yaitu thermo yang artinya panas dan meter yang artinya mengukur (to measure).

[sunting] Tipe termometer

Beberapa tipe termometer antara lain:

* termometer alkohol
* termometer basal
* termometer merkuri
* termometer oral
* termometer Galileo
* termometer infra merah
* termometer cairan kristal
* termistor
* bi-metal mechanical thermometer
* electrical resistance thermometer
* reversing thermometer
* silicon bandgap temperature sensor
* six's thermometer, juga dikenal sebagai maximum minimum thermometer
* thermocouple
* coulomb blockade thermometer

[sunting] Termometer yang sering digunakan

Termometer yang biasanya dipakai sebagai berikut:

[sunting] Termometer bulb (air raksa atau alkohol)

* Menggunakan gelembung besar (bulb) pada ujung bawah tempat menampung cairan, dan tabung sempit (lubang kapiler) untuk menekankan perubahan volume atau tempat pemuaian cairan.
* Berdasar pada prinsip suatu cairan volumenya berubah sesuai temperatur. Cairan yang diisikan terkadang alkohol yang berwarna tetapi juga bisa cairan metalik yang disebut merkuri, keduanya memuai bila dipanaskan dan menyusut bila didinginkan
* Ada nomor disepanjang tuba gelas yang menjadi tanda besaran temperatur.
* Keutungan termometer bulb antara lain tidak memerlukan alat bantu, relatif murah, tidak mudah terkontaminasi bahan kimia sehingga cocok untuk laboratorium kimia, dan konduktivitas panas rendah.
* Kelemahan termometer bulb antara lain mudah pecah, mudah terkontaminasi cairan (alkohol atau merkuri), kontaminasi gelas/kaca, dan prosedur pengukuran yang rumit (pencelupan).
* Penggunaan thermometer bulb harus melindungi bulb dari benturan dan menghindari pengukuran yang melebihi skala termometer.
* Sumber kesalahan termometer bulb:

- time constant effect, waktu yang diperlukan konduksi panas dari luar ke tengah batang kapiler
- thermal capacity effect, apabila massa yang diukur relatif kecil, akan banyak panas yang diserap oleh termometer dan mengurangi suhu sebenarnya
- cairan (alkohol, merkuri) yang terputus
- kesalahan pembacaan
- kesalahan pencelupan

[sunting] Termometer spring

Menggunakan sebuah coil (pelat pipih) yang terbuat dari logam yang sensitif terhadap panas, pada ujung spring terdapat pointer. Bila udara panas, coil (logam) mengembang sehingga pointer bergerak naik, sedangkan bila udara dingin logam mengkerut pointer bergerak turun. Secara umum termometer ini paling rendah keakuratannya di banding termometer bulb dan digital.

* Penggunaan termometer spring harus selalu melindungi pipa kapiler dan ujung sensor (probe) terhadap benturan/ gesekan. Selain itu, pemakaiannya tidak boleh melebihi suhu skala dan harus diletakkan di tempat yang tidak terpengaruh getaran.

[sunting] Termometer non kontak

Termometer infra merah, mendeteksi temperatur secara optik selama objek diamati, radiasi energi sinar infra merah diukur, dan disajikan sebagai suhu, dengan mengetahui jumlah energi infra merah yang dipancarkan oleh objek dan emisinya, temperatur objek dapat dibedakan.

[sunting] Termometer elektronik

Ada dua jenis yang digunakan di pengolahan, yakni thermocouple dan resistance thermometer. Biasanya, industri menggunakan nominal resistan 100 ohm pada 0 °C sehingga disebut sebagai sensor Pt-100. Pt adalah simbol untuk platinum, sensivitas standar sensor 100 ohm adalah nominal 0.385 ohm/°C, RTDs dengan sensivitas 0.375 dan 0.392 ohm/°C juga tersedia.

[sunting] Satuan Suhu

Mengacu pada SI, satuan suhu adalah Kelvin (K). Skala-skala lain adalah Celsius, Fahrenheit, dan Reamur.

Pada skala Celsius, 0°C adalah titik dimana air membeku dan 100°C adalah titik didih air pada tekanan 1 atmosfer. Skala ini adalah yang paling sering digunakan di dunia. Skala Celsius juga sama dengan Kelvin sehingga cara mengubahnya ke Kelvin cukup ditambahkan 273 (atau 273.15 untuk lebih tepatnya).

Skala Fahrenheit adalah skala umum yang dipakai di Amerika Serikat. Suhu air membeku adalah 32°F dan titik didih air adalah 212°F.

Sebagai satuan baku, Kelvin tidak memerlukan tanda derajat dalam penulisannya. Misalnya cukup ditulis suhu 20 K saja, tidak perlu 20° K.

[sunting] Mengubah Skala Suhu

Cara mudah untuk mengubah dari Celsius, Fahrenheit, dan Reamur adalah dengan mengingat perbandingan C:F:R = 5:9:4. Caranya, adalah (Skala tujuan)/(Skala awal)xSuhu. Dari Celsius ke Fahrenheit setelah menggunakan cara itu, ditambahkan 32.

Contoh

* 100°C pada skala Fahrenheit adalah 9/5 x 100 + 32 = 212°F
* 77°F pada skala Celsius adalah 5/9 x (77-32) = 25
Read more

jaringan or network

Network adalah;
Merupakan jaringan antar komputer yang menghubungkan satu komputer dengan jaringan lainnya. untuk menyusun jaringan ini, diperlukan perencanaan dari jaringan yang dibangun yang disebut dengan topology. scope jaringan itu sendiri dibagi menjadi tiga, yaitu LAN, WAN, dan MAN. Perangkat yang dibutuhkan untuk mendukung jaringan diantaranya card jaringan.
aringan komputer adalah sebuah sistem yang terdiri atas komputer dan perangkat jaringan lainnya yang bekerja bersama-sama untuk mencapai suatu tujuan yang sama. Tujuan dari jaringan komputer adalah:
• Membagi sumber daya: contohnya berbagi pemakaian printer, CPU, memori, harddisk
• Komunikasi: contohnya surat elektronik, instant messaging, chatting
• Akses informasi: contohnya web browsing
Agar dapat mencapai tujuan yang sama, setiap bagian dari jaringan komputer meminta dan memberikan layanan (service). Pihak yang meminta layanan disebut klien (client) dan yang memberikan layanan disebut pelayan (server). Arsitektur ini disebut dengan sistem client-server, dan digunakan pada hampir seluruh aplikasi jaringan komputer.
Klasifikasi Berdasarkan skala :
• Personal Area Network (PAN)
• Campus Area Network (CAN)
• Local Area Network (LAN): suatu jaringan komputer yang menghubungkan suatu komputer dengan komputer lain dengan jarak yang terbatas.
• Metropolitant Area Network (MAN): prinsip sama dengan LAN, hanya saja jaraknya lebih luas, yaitu 10-50 km.
• Wide Area Network (WAN): jaraknya antar kota, negara, dan benua. ini sama dengan internet.
• Global Area Network (GAN)
Berdasarkan fungsi : Pada dasarnya setiap jaringan komputer ada yang berfungsi sebagai client dan juga server. Tetapi ada jaringan yang memiliki komputer yang khusus didedikasikan sebagai server sedangkan yang lain sebagai client. Ada juga yang tidak memiliki komputer yang khusus berfungsi sebagai server saja. Karena itu berdasarkan fungsinya maka ada dua jenis jaringan komputer:
• Client-server
Yaitu jaringan komputer dengan komputer yang didedikasikan khusus sebagai server. Sebuah service/layanan bisa diberikan oleh sebuah komputer atau lebih. Contohnya adalah sebuah domain seperti www.detik.com yang dilayani oleh banyak komputer web server. Atau bisa juga banyak service/layanan yang diberikan oleh satu komputer. Contohnya adalah server jtk.polban.ac.id yang merupakan satu komputer dengan multi service yaitu mail server, web server, file server, database server dan lainnya.
• Peer-to-peer
Yaitu jaringan komputer dimana setiap host dapat menjadi server dan juga menjadi client secara bersamaan. Contohnya dalam file sharing antar komputer di Jaringan Windows Network Neighbourhood ada 5 komputer (kita beri nama A,B,C,D dan E) yang memberi hak akses terhadap file yang dimilikinya. Pada satu saat A mengakses file share dari B bernama data_nilai.xls dan juga memberi akses file soal_uas.doc kepada C. Saat A mengakses file dari B maka A berfungsi sebagai client dan saat A memberi akses file kepada C maka A berfungsi sebagai server. Kedua fungsi itu dilakukan oleh A secara bersamaan maka jaringan seperti ini dinamakan peer to peer.
Arsitektur komputer jaringan, atau disebut juga dengan network architecture. bagaimana suatu jaringan disusun sedemikian rupa sehingga mesin lainnya dapat saling terhubung satu dengan lainnya. Konfigurasi ini dapat berupa point to point network, star network, hierarchical tree network, loop network, ring network, bus network, web network, atau meta network.

Topologi adalah ‘Topologi (dari bahasa Yunani τόπος, "tempat", dan λόγος, "ilmu") merupakan cabang matematika yang bersangkutan dengan tata ruang yang tidak berubah dalam deformasi dwikontinu (yaitu ruang yang dapat ditekuk, dilipat, disusut, direntangkan, dan dipilin tetapi tidak diperkenankan untuk dipotong, dirobek, ditusuk atau dilekatkan). Ia muncul melalui pengembangan konsep dari geometri dan teori himpunan, seperti ruang, dimensi, bentuk, transformasi.
Ide yang sekarang diklasifikasikan kedalam topologi telah dinyatakan semenjak 1736, dan pada akhir abad ke-19 sebuah ilmu yang jelas terpisah dikembangkan. Ilmu ini disebut dalam bahasa Latin sebagai geometria situs ( "geometri dari tempat") atau analisis situs (Yunani-Latin untuk "pengkajian tempat "), dan kemudian memperoleh nama mutakhir topologi. Di tengah-tengah abad ke-20, ilmu ini adalah kawasan pertumbuhan yangpenting dalam matematika.
Kata topologi digunakan baik untuk cabang matematika dan untuk keluarga himpunan dengan beberapa properti yang digunakan untuk menentukan ruang topologis, objek dasar dari topologi. Beberapa yang penting adalah homeomorfisme, yang dapat didefinisikan sebagai fungsi malar dengan balikan malar pula. Misalnya, fungsi y = x3 adalah homeomordisme dari deret nyata.
Topologi mencakup banyak subbidang. Bagian yang paling mendasar dan tradisional dalam topologi adalah:
• Topologi titik-himpunan, yang menetapkan dasar aspek topologi dan menyelidiki konsep yang hakiki pada ruang topologi - contoh dasar adalah kekompakan dan kesinambungan.
• Aljabar topologi, yang umumnya mencoba untuk mengukur tingkat kesinambungan menggunakan konstruksi aljabar seperti kelompok homotopi, homology
• Topologi geometris yang terutamanya mengkaji manifold dan pembenamannya (penempatannya) di manifold lainnya.
Beberapa bidang yang paling aktif, seperti topologi dimensi rendah dan teori grafik, tidak muat dengan rapi dalam pembagian ini.
Daftar isi
[sembunyikan]
• 1 Definisi topologi:
• 2 Sifat-sifat Topologi
• 3 Ruang Topologi
• 4 Homeomorphisme
• 5 Lihat pula
• 6 Pranala luar

[sunting] Definisi topologi:
• Abstraksi geometri dimana konsep jarak absolut dibuang, dan kita melihat sub himpunan geometri tak gayut ukuran, bentuk atau lokasi.
• Studi dasar-dasar teoritik himpunan untuk konsep fungsi kontinu.
• Studi himpunan yang memiliki beberapa ide "kedekatan" titik yang ditetapkan.

Topologi berkenaan dengan studi sifat-sifat topologi dari bentuk, yakni sifat yang tidak berubah dalam transformasi bikontinu satu-satu (disebut homeomorphisme).
Dua bentuk dapat dideformasi dari satu menjadi yang lain disebut homeomorphis, dan dipandang sama dari tinjauan topologi. Sebagai contoh, kubus padat dan bola padat adalah homeomorphis.
Akan tetapi, tidaklah mungkin untuk mendeformasi bola menjadi lingkaran oleh transformasi bikontinu satu-satu. Dimensi adalah sifat topologi. Dalam makna, sifat topologi adalah sifat bentuk yang lebih mendalam.
[sunting] Sifat-sifat Topologi
Dalam topologi dan bidang matematika terkait, sifat topologi atau invarian topologi adalah sifat ruang topologi yang invarian dalam homeomorphisme. Jika diberikan dua ruang topologi X dan Y dan homeomorphisme f antara mereka, sifat topologi untuk sub himpunan A dari X berlaku jika dan hanya jika ia berlaku untuk f(A).
Soal umum dalam topologi adalah memutuskan apakah dua ruang topologi homeomorphis atau tidak homeomorphis. Untuk membuktikan bahwa dua ruang adalah homeomorphis, cukup untuk menemukan sifat topologi yang tidak terbagi oleh mereka.
[sunting] Ruang Topologi
Ruang topologi adalah struktur yang memperkenankan kita untuk memformalkan konsep seperti konvergensi, keterhubungan (connectedness) dan kontinuitas.
[sunting] Homeomorphisme
Dalam bidang topologi, homeomorphisme atau isomorphisme topologi (dari bahasa Yunani, homeos = identik dan morphe = bentuk) adalah isomorphisme khusus antara ruang topologi yang memenuhi sifat-sifat topologi. Dua ruang dengan homeomorphisme antara mereka disebut homeomorphis. Dari tinjauan topologi mereka adalah sama.
Secara kasar dapat dikatakan, ruang topologi adalah objek geometri dan homeomorphisme adalah peregangan dan pembengkokan kontinu dari suatu objek menjadi objek bentuk baru. Jadi persegi dan lingkaran adalah homeomorphis. Dalam tinjauan topologi, cangkir bergagang satu dan kue donat adalah sama.

Berdasarkan topologi jaringan, jaringan komputer dapat dibedakan atas:
• Topologi bus
• Topologi bintang
• Topologi cincin
• Topologi mesh
• Topologi pohon
• Topologi linier
Konfigurasi Sistem
Bab ini membahas bagaimana mengkonfigurasi beberapa setting pada Linux secara umum. Bahasan utama mempergunakan distribusi Slackware, dengan tambahan catatan pada distribusi SuSE dan RedHat untuk seting mempergunakan program bantu. Pilihan Slackware sebagai bahasan utama dilatarbelakangi oleh sebab bahwa seting di Slackware sebagian besar manual (tidak memiliki program bantu) sehingga bisa diterapkan pada Linux semua distribusi. Penambahan informasi dengan program bantu, pada prinsipnya hanya mempermudah dalam konfigurasi, namun mempunyai keterbatasan hanya berlaku di satu distribusi saja.
Konfigurasi dasar yang disampaikan di bab ini cukup untuk membuat Linux dapat dimanfaatkan sebagai server ataupun workstation pada jaringan. Pertama adalah review apa yang sebetulnya terjadi pada Linux saat komputer booting.
KONFIGURASI NETWORK (JARINGAN)
BASIS DATA JARINGAN
Plan 9 menggunakan sebuah basis data tunggal untuk menyimpan semua konfigurasi
informasi jaringan terkait di dalam system.
Basis data menyimpan konfigurasi untuk mesin yang diidentifikasikan secara spesifik
oleh instalasi local, konfigurasi awal untuk mesin di keterangan-keterangan subnets,
informasi resolusi nama domain, dan memetakan antara nama layanan TCP dan nomor
port diantara hal yang lain.
Basis data dirakit dari sejumlah file-file teks yang memuat sejumlah struktur
penyimpanan.
Sumber awal dari basis data adalah file teks /lib/ndb/local. Masukan yang paling penting
pada file tersebut adalah “database=” entry, yang menspesifikasikan sebuah daftar file-
file yang lain yang dimasukkan. Sebagai contoh,
database=
file=/lib/ndb/local
file=/lib/ndb/local-cs
file=/lib/ndb/common
Itu semua berasal dari isi file ini dan yang terdapat di dalam daftar dimana basis data
dirakit.
Secara konvensional, file /lib/ndb/common adalah untuk definisi port standard dan yang
lain; file-file yang lain yang berisi konfigurasi sistem aktual.
STRUKTUR PENYIMPANAN
Secara leksikal, suatu penyimpanan adalah sebuah baris yang unidented diikuti oleh
sejumlah baris yang idented (rangkap dua). Jadi sebuah baris yang unidented, baris
kosong, atau comment line (baris komentar) (yang dimulai dengan #) mempunyai hasil
akhir sebuah penyimpanan.
Secara semantik, suatu penyimpanan adalah kumpulan tuple ``key=value''. Tuple pada
baris yang sama terikat lebih kuat daripada tuple pada baris yang berbeda, tetapi
umumnya hal tersebut tidak begitu penting.
Sebuah contoh penyimpanan adalah:
ip=10.247.62.235 ip=10.247.60.200 sys=lusitania ether=0060088bc416
proto=il
dom=lusitania.domain.dom
Penyimpanan ini mendefinisikan sebuah system yang bernama “lusitania” dengan alamat
ethernet yang dispesifikasikan, dua alamat IP, dan sebuah nama domain yang memenuhi
syarat. Tuple ``proto=il'' mengindikasikan bahwa system berbicaara tentang IL, pilihan
protokol transport Plan 9. Secara otomatis, system diasumsikan hanya untuk berbicara
TCP.
Atribut lain yang berguna mencakup:
auth
default Plan 9 authentication server (server
pembuktian default Plan 9)
cpu
default Plan 9 cpu server (cpu server default
Plan 9)
dns
default DNS server (can be more than one) (DNS
server default (dapat lebih dari satu)
dnsdomain
default DNS domain suffix (can be more than one)
( akhiran domain DNS yang default dapat lebih dari satu)
fs
default Plan 9 file server (file server Plan 9
yang default)
ipgw
IP gateway (gerbang IP)
ipmask
IP network mask (pelindung IP jaringan)
ipsubmask
IP subnetwork mask (pelindung IP sub jaringan)
ntp
default NTP server (server NTP yang default)
nntp
default NNTP server (server NNTP yang default)
smtp
default SMTP server (server SMTP yang default)
HIERARKI PERJALANAN IP
Kebanyakan informasi di dalam basis data tidak disimpan di dalam system penyimpanan.
Malahan, fungsi pencarian basis data ndbipinfo dan antar muka (interface) baris
komentar yang sederhana ndb/ipquery mengenal tentang IP jaringan hierarki.
Ketika sebuah atribut, katakana saja ‘fs’, dibutuhkan untuk sebuah system, proses
pencarian dimulai dengan melihat penyimpanan basis data sistem jaringan. Jika
mempunyai sebuah fs= entry, ndbipinfo mengembalikan nilai tersebut. Jika tidak,
ndbipinfo mencatat bahwa alamat IP sistem dan berjalan ke bawah IP hirarki melalui
basis data, dimulai dengan IP jaringan awal untuk alamat itu.
Secara spesifik, hal itu dimulai dengan default IP mask untuk alamat itu, menambahkan
alamat IP untuk menemukan IP jaringan awal. Seandainya alamat kita lebih tinggi dari
10.247.62.235. IP mask default untuk alamat tersebut adalah 255.0.0.0, jadi IP jaringan
default adalah 10.0.0.0.
Ndbipinfo melihat sebuah masukan ip=10.0.0.0.
dengan
sebuah
masukan
ipmask=255.0.0.0. Andaikan kita menemukan
ipnet=ten-net ip=10.0.0.0 ipmask=255.0.0.0
ipsubmask=255.255.255.0
smtp=mailserver.domain.dom
ntp=ntpserver.domain.dom
fs=myfs
Masukan berkata bahwa jaringan tersusun oleh sub jaringan yang lebih kecil dengan
mask 255.255.255.0, jadi kita melihat masukan IP jaringan 10.247.62.0 dengan mask
yang tepat. Seandainya kita menemukan ( nilai didalam ipnet=tuple yang tidak relevan)
ipnet=my-net ip=10.247.62.0 ipmask=255.255.255.0
fs=my-other-fs
ipgw=10.247.62.1
Karena tidak ada masukan ipsubmask, kita berhenti berjalan/mencari, mengembalikan
``my-other-fs'', karena itulah fs= entry untuk subnet terkecil yang kita dapat. Ssebagai
catatan bahwa masukan pemyimpanan my-net melebihi masukan penyimpanan ten-
net, hanya sebagai suatu fs= entry di dalam penyimpanan lusitania yang akan
melebihi keduanya. Jika kita tidak menemukan fs= entry di dalam my-net, kita akan
menggunakan ten-net.
Program ndb/ipquery baik untuk mengetes apa yang telah di set oleh jaringan anda
seperti yang anda inginkan, dan hirarki IP berjalan seperti yang diharapkan.
IP submask default ditentukan dengan angka pertama pada alamat:
0-127
255.0.0.0
128-191
255.255.0.0
192-223
255.255.255.0
224-239
Cadangan untuk alamat yang multicast
240-255
Cadangan untuk penggunaan yang akan datang
(Ini adalah standar internet, bukan standar Plan 9)
KONFIGURASI
Setelah membaca bagian awal, anda dapat memulai untuk mendefinisikan rancangan dari
jaringan anda. Suatu contoh konfigurasi ada di at /lib/ndb/local.complicated. Suatu
konfigurasi minimal dihadirkan di sini.
database=
file=/lib/ndb/local
file=/lib/ndb/common
ipnet=mynetwork ip=192.168.0.0 ipmask=255.255.255.0
ipgw=192.168.0.1
dns=1.2.3.4
auth=mauretania
proto=il
ip=192.168.0.2 sys=mauretania
ip=192.168.0.3 sys=aquitania
Di contoh ini kami mensetup mesin 'mauretania' sebagai mesin Plan 9 pertama kami dan
menjadikannya server authentikasi untuk 192.168.0.x subnet kami. Kami akan
memberikan mesin kami alamat IP 192.168.0.2.
Jika anda tidak berminat untuk mempunyai koneksi internet anda dapat menghilangkan
ipgw dan dns. Hal ini hanya meninggalkan proto=il tanpa penjelasan, dan untuk saat ini
kami hanya akan mengatakan itu penting.
IPCONFIG
Sebagai catatan bahwa di atas kami telah mendefinisikan dua sistem, yang satu adalah
'mauretania', dan yang lain disebut 'aquitania'. Bagaimana Plan 9 memastikan bahwa
mesin kami menggunakan 'mauretania'? Jawabannya adalah ip/config.
Ketika suatu mesin Plan 9 mem-boot, mesin itu akan menjalankan konfigurasi script
/rc/bin/termrc or /rc/bin/cpurc, tergantung apakah itu adalah terminal atau server CPU.
Di dalam /rc/bin/termrc anda akan menemukan baris
ip/ipconfig >/dev/null >[2=1]
Baris ini mengakibatkan mesin mencari server DHCP untuk men-supply-nya dengan
konfigurasi informasi. Anda dapat men-set up CPU/autentifikasi server Plan 9 untuk
menjalankan server DHCP. Ketika anda melakukan hal ini, server akan mencari basis
data jaringannya dan menyediakan konfigurasi default-nya.
Meskipun demikian, selalu ada informasi yang tidak cukup untuk memberikan IP yang
pasti untuk suatu mesin yang spesifik. Salah satu cara melakukan hal ini adalah untuk
menyatukan suatu konfigurasi yang spesifik ke suatu alamat jaringan card's MAC yang
spesifik. Setiap kartu jaringan fisik diberikan sebuah alamat MAC yang unik selama
proses manufaktur. Anda dapat menemukan alamat kartu MAC anda dengan mengetik
baris
cat /net/ether0/addr
(Jika tidak terdapat sebuah direktori /net/ether0 maka Plan 9 tidak akan menemukan suatu
ethernet card (kartu ethernet) dalam sistem anda.) Sekarang anda dapat menambahkan
alamat MAC sebagai suatu atribut pada baris konfigurasi seperti di dalam ndb.
ip=192.168.0.2 sys=mauretania ether=abc12345def
dimana 'abc12345def' adlah alamat MAC. Tentu saja jika tidak terdapat server Plan 9
pada jaringan maka metode ini tidak akan berhasil. Ketika men-setting up mesin Plan 9
pertama anda, anda dapat memodifikasi baris ip/ipconfig untuk menspesifikasi
gateway tertentu, ip, dan ip-mask untuk digunakan.
ip/ipconfig -g 192.168.0.1 ether /net/ether0 192.168.0.2 255.255.255.0
Sekarang anda mempunyai informasi yang cukup untuk mengikuti instruksi pada
Configuring a Standalone CPU Server. Ia akan membimbing dalam men-set up sebuah
sistem yang sesuai seperti kombinasi server CPU. Server autentifikasi, server DHCP, dan
bahkan server kfs(file). Untuk file server yang tepat lihat Installing a Plan 9 file server.

Alat dan bahan membuat jaringan

• Kabel UTP : 1 roll * @700000 = Rp. 700.000
• Konektor RJ 45 : 1box = Rp. 25.000
• Switch 24 Port : 2 * @ 700000 = Rp.1400.000
• Etherned Card : 30 * @30000 = Rp. 900.000
• Tang Crimping : 2 * @ 75000 = Rp. 150.000
• Kabel Tester : 1 buah = Rp. 50.000
Read more